基于条纹投影的显微镜自动对焦研究

刘璐,闫佩正*,但西佐,鲍思源,王永红

合肥工业大学仪器科学与光电工程学院,安徽合肥 230009

摘要 自动对焦技术是薄膜晶体管液晶面板(TFT-LCD)检测中非常重要的一环。针对 TFT-LCD液晶面板的检测中需要快速准确地对焦到液晶面板被测面的问题,提出一种可自动对焦的显微镜系统。将数字光栅投影到物面上,先通过分光棱镜将光分成两路,一路被面阵 CCD 接收,另一路通过分光棱镜和反射镜将光栅的像分成两路,分别成像在线阵 CCD 的靶面上。通过线阵 CCD 上两个光栅图清晰度的对比实现离焦方向和离焦量的判断,使用微位移平台移动物镜,实现显微镜的自动对焦。本研究对自动对焦数字光栅的影响因素进行分析,并采用变周期数字光栅进行对焦。

关键词 显微;自动对焦;等周期光栅;变周期光栅 中图分类号 TH742 文献标识码 A

doi: 10.3788/AOS201939.0818001

Microscope Autofocus Research Based on Stripe Projection

Liu Lu, Yan Peizheng^{*}, Dan Xizuo, Bao Siyuan, Wang Yonghong School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China

Abstract Autofocus technology is a crucial part in the detection of thin film transistor liquid crystal display (TFT-LCD). Because the fast and accurate autofocus is required, an autofocus microscope system is adopted to detect TFT-LCD. The digital grating is projected onto the surface of the measured object. The reflected light is split into two paths using a beam-splitting prism. One is imaged onto the area-array charge-coupled device (CCD) directly, whereas the other is split into two paths using another beam-splitting prism again. A reflecting mirror is used to couple two images of the digital grating onto a line-array CCD. The defocusing direction and defocusing amount are judged by comparing the sharpness of two grating images on the line-array CCD. In addition, a micro-displacement platform is used to move the objective lens and achieve the microscope autofocus. Thus, this study analyzes the digital grating, which affects autofocus, and uses a variable-period digital grating for focusing. **Key words** microscopy; autofocus; equal-period grating; variable-period grating

OCIS codes 180.1790; 110.1080; 120.4630

1 引 言

随着科学技术的发展,手动调焦的普通光学显 微镜在工业应用等方面不能满足实时测量的要求, 这就要求显微镜具有快速、准确的自动对焦功能。 本文旨在设计自动对焦显微镜,并将其应用于薄膜 晶体管液晶显示器(TFT-LCD)的质量检测中。在 检测过程中,需要用显微镜对液晶面板进行细节查 看和缺陷检测^[1-2]。但显微镜的景深很小,在检测过 程中,液晶面板厚度的差别和面板在移动过程中 *xy* 方向的移动会导致 *z* 方向上出现微小的振动,使得 被测物偏离焦平面,得到模糊的图像。因此,准确快 速的显微镜自动对焦技术就显得至关重要^[3]。

现有的光学显微镜的自动对焦方式可分为被 动式和主动式^[4]。被动式对焦方法主要是基于图 像处理的方式,分为对焦深度法^[5]和离焦深度 法^[6]。被动式对焦方法灵活多变,但是速度较慢, 对焦的精度取决于所采集图像的质量。主动式对 焦方法主要有傅科刀口法、临界角法、偏心光束法 和像散法^[7]。主动式对焦方法速度较快,但物距 小,测量精度较差^[1]。

肖磊等^[8]基于激光三角测距 TFT-LCD 研发的

* E-mail: pzyan@hfut.edu.cn

收稿日期: 2018-12-14;修回日期: 2019-03-27;录用日期: 2019-04-15

基金项目:国家重点研发计划(2016YFF0101803)、国家自然科学基金(51805137)

自动对焦系统对焦精度高,但对焦过程中受相机快 门时间的影响较大。Hsu 等^[9]提出一种基于快速 散光的自动对焦方法,通过嵌入的四象限二极管将 聚焦误差信号(FES)转换成显微镜的散焦距离来实 现快速自动对焦。孙越等^[10]提出一种基于 Prewitt 模板的图像清晰度评价函数的改进方法,引入了"阈 值"的概念,将其与图像清晰度评价函数相结合,该 算法不仅具有唯一峰值、无偏性好、灵敏度高等优 点,而且对噪声的干扰不敏感。王烨茹等[11]提出一 种去除饱和像素的图像清晰度评价方法,使得在过 亮区域也能进行清晰度评价。蒋章伟等[12]设计了 一套针对海底热液喷口烟囱体探测的显微对焦系 统,以双色激光辅助对焦方法扩大寻焦范围并加快 对焦速度。段晨等[13]分析了一系列影响光刻对焦 性能的误差源,提出了一种更准确的浸没式光刻机 对焦控制的方法和原则。

本文设计了一种基于投影条纹并与光学显微镜 高度匹配的自动对焦系统,使用投影仪将数字光栅 投射到被测物表面。将显微镜的成像光路分成两 路,一路用面阵图像传感器(CCD)记录,用于直观观 察和记录;另一路再分为两路(用线阵 CCD 接收), 以减小图像的计算量,减少自动对焦的耗时,这两路 光路存在光程差,通过计算两路投影光栅的清晰度 差值来判断被测物是否处于焦面上。通过差值的大 小和正负来判断被测物的离焦量和离焦方向。

2 自动对焦显微镜系统设计

所采用的自动对焦显微镜系统如图 1 所示,由 显微物镜、套筒透镜、分光棱镜、反射镜、投影仪、面 阵 CCD、线阵 CCD、计算机和微位移平台组成。系 统中采用的是尼康无限远校正物镜,通过移动物镜 实现自动对焦。

使用投影仪(DLP)将光栅图像依次通过反射镜 1(REFL1)、分光棱镜 1(BS1)、套筒透镜和显微物 镜,投射到被测物的被测面上。被测物的像和被投 射到被测物上的光栅像经过显微物镜、套筒透镜、分 光棱镜 1,到达分光棱镜 2(BS2);分光棱镜 2将被 测物的像和光栅像分成两路,一路在面阵 CCD 上得 到被测物的像,用于观察、采集被测物的像,可以直 观地观察到显微镜是否正确对焦或用于后续的处理 中。另一路经过分光棱镜 3(BS3)后被分成两路,一 路直接打到线阵 CCD 的靶面区域 B,另一束经过反 射镜 2(REFL2)再打到线阵 CCD 的靶面区域 A。 通过对比 A、B 两个区域的信号进行对焦。分光棱

图 1 自动对焦显微镜的光学布局 Fig. 1 Optical layout of autofocus microscope

镜和直角棱镜的大小决定了 A、B 两路信号的光程 差,光程差的大小影响自动对焦的范围,线阵 CCD 采集的行宽度为 5000 pixel。使用尺寸为12.5 mm 的分光棱镜和直角棱镜进行分光,得到数字光栅在 线阵 CCD 靶面的宽度约为 1600 pixel。这时线阵 CCD 上的两路光信号能被很好地分开,并且完全被 线阵 CCD 采集到。使用线阵 CCD,可避免在面阵 CCD 中进行二维图像的清晰度分析比较^[14],直接对 一维图像进行处理。

由于 A 光通过直角反射棱镜, A 光的光程大于 B 光, 因此当被测物位于焦面时, A 光成像清晰的位 置和 B 光成像清晰的位置不同, 将线阵 CCD 放置在 与 A、B 成像清晰的位置之间, 使得物体位于焦面 时, A 区域光栅的清晰度等于 B 区域光栅的清晰 度。当线阵 CCD 位于准确的位置时, 用显微镜检测 物体, 使用微位移平台移动物镜, 线阵 CCD 接收到 的光栅成像情况如图 2 所示。

对于线阵 CCD,令 A、B 两个区域接收到的图 像清晰度分别为 C_A 和 C_B ,它们的清晰度差值为 z。 显微镜能实现自动对焦的最远位置是区域 B 接收 到的条纹图最清晰的位置附近,这时得到 z 的最小 值,离焦量为负的最大值,如图 2(a)所示;当显微镜 远离焦面时, $z = C_A - C_B < 0$,如图 2(b)所示;当显 微镜在焦面上时, $z = C_A - C_B = 0$,如图 2(c)所示; 当显微镜离焦面较近时, $z = C_A - C_B > 0$,如图 2(d)所示;显微镜能实现自动对焦的最近位置是区域 A 接收到的条纹图最清晰位置的附近,这时得到 z 的 最大值,离焦量为正的最大值,如图 2(e)所示。清 晰度差值的大小可以直观地反映离焦量,z值的绝

图 2 A、B两路光成像清晰位置和离焦程度的关系。(a)(b)远焦;(c)焦面;(d)(e)近焦 Fig. 2 Relationship between clear position and defocus degree of A and B two-path optical imaging. (a)(b) Far focus; (c) focal plane; (d)(e) near focus

对值越大,离焦量越大,符号可以代表离焦方向。条 纹的清晰度即为光栅图的对比度,光栅越清晰,它的 对比度值就越高。清晰度使用绝对差值法进行计 算,计算公式为

$$F_1 = \sum |f(x) - f(x+1)|,$$
 (1)

式中:F₁为清晰度;f(x)为线阵 CCD 上像素的灰度 值。绝对差值公式只选取相邻的两个像素的灰度值 之差作为图像灰度变化的判断依据^[2]。线阵 CCD 采集的光栅图为一维光栅图,可采用绝对差值法对 一维图像进行对比度的计算,并且计算量最小。

3 实验与结果分析

实验系统如图 3 所示。选用液晶平板的玻璃基 板为被测物,面阵 CCD 用于对玻璃基板的直接观 测,使用 5 倍无限远平行校正物镜,当被测物位于焦 面时,面阵 CCD 采集到的清晰的玻璃基板图像如图 4 所示。使用投影仪投射的光栅作为系统照明,竖 直条纹为投影的数字光栅图像,竖直条纹后面的部 分为玻璃基板的图像。被测物的图像不影响对焦的 结果。利用线阵 CCD 采集多个周期的光栅图像,得 到的清晰度具有平均效应,使被测物的高亮区域对 对焦结果的影响较小。 为验证得到的数字光栅,采用投影仪投影不同 周期的黑白光栅。投影仪使用 TI 公司的 DLP 0.45 WXGA DMD 芯片,其微镜分辨率为 912×1140,微 镜间 距 为 7.6 μ m。面 阵 CCD 的 分 辨 率 为 1626 pixel×1236 pixel, 靶面尺寸为 7.2 mm× 5.4 mm;线阵 CCD 的有效像素为 5000 pixel,像素 大小为7 μ m×7 μ m。采用 PI 的微位移平台,最大 速度为10 mm/s。当采用等周期、等间距光栅,即用 投影仪投影等间距的黑白条纹时,线阵相机采集到 的 A、B 两个区域的数据如图 5 所示。

图 5(a)~(c)分别为远焦、焦面、近焦位置处线 阵 CCD 采集到的光栅图,其中左半边的光栅图对应 的是通道 B,右半边的光栅图对应的是通道 A。系 统根据线阵 CCD 上采集的光栅图的清晰度差值来 判断被测物的离焦方向和离焦量。通过离焦量的正 负来决定微位移平台的移动方向,z 大于 0 时,被测 物位于远焦的位置,微位移平台向接近被测物方向 移动;z 小于 0 时,被测物位于近焦的位置,微位移 平台向远离被测物的方向移动。采用 5 倍和 10 倍 物镜时,微位移平台的步进为 0.01 mm;采用 20 倍 物镜时,微位移平台的步进为 0.001 mm。每步进一 次,采集一张图片,进行清晰度评价后得到新的z

图 3 自动对焦显微镜光学平台实物图 Fig. 3 Photo of optical platform of autofocus microscope

Fig. 4 Acquisited image from area-array CCD

值。如果 z 值仍与前一个 z 值的正负一致,则微位 移平台继续往同方向移动;如果 z 值的正负符号发 生变化,则微位移平台往反方向步进一步,并认为此 时被测物正焦。

在分析一维灰度图时,线阵 CCD 采集得到的光 栅图像密度受投影仪投射的光栅周期的影响。下面 通过实验分析光栅周期对系统的影响,得到最适合 本系统的光栅。

3.1 光栅周期影响实验

(1) 等周期数字光栅

实验采用 5 倍物镜,投影仪投影的等周期数字 光栅如图 6 所示。将数字光栅投影到被测物的表 面,光栅的周期会影响自动对焦的范围。改变数字 光栅的周期,观察周期对对焦范围的影响。

Fig. 6 Equal-period fringes

使用绝对差值函数对光栅图进行清晰度判断。 沿着近焦到远焦的方向移动物镜,物镜每移动 0.01 mm,线阵 CCD 采集一次图片。当条纹太密 时,在线阵 CCD 上不能分辨出条纹。对比光栅宽度 为12,16,18,19,20,22,24 pixel 的数字光栅,得到 的对焦曲线如图 7(a)所示,曲线的纵坐标为清晰度 的差值z,曲线的横坐标为离焦量,横坐标为0表示 离焦量为0,表示正焦的位置,横坐标为负时,物镜 处于近焦位置,z大于0;横坐标为正时,物镜处于 远焦位置,z小于0。从线性程度来看,数字光栅条 纹宽度为 12 pixel 时,线性区域较短,在峰值附近有 伪峰值出现,这会导致对焦出现误判。当宽度为 24 pixel时,线性区域起伏较大。不同宽度的数字光 栅的对焦范围如图 7(b)所示,可以看到,当数字光 栅的条纹宽度为 19 pixel 时,对焦范围最大,为 0.3 mm.

通过对焦范围和线性的比较可知:若采用等周 期数字光栅,当光栅过密时,线阵 CCD 上不能完全 得到光栅的细节图像;当光栅过疏时,对焦范围会减 小,线性也会变差。当条纹像素宽度为 19 pixel 时, 对焦范围最大,对焦曲线的线性较好。对焦误差为 清晰度差值为 0 时的离焦量。如图 8 所示,采用条 纹宽度为 19 pixel 时,对焦的误差为 0.001054 mm。 对焦的误差在 5 倍物镜的景深范围内。由上述分析 可知,利用等周期数字光栅的对比度差来判断离焦

量和离焦方向的方法是可行的。

(2) 变周期数字光栅

等周期数字光栅的清晰度信息比较重复和 单一,使用变周期数字光栅进行自动对焦。由于 线阵 CCD 的像素大小为 7 μm×7 μm,故光栅条 纹的宽度被线阵 CCD采集时需要大于 7 μm,这 就要求数字光栅的条纹宽度大于 1 pixel。由等 周期数字光栅的对焦结果可知,当光栅宽度为 19 pixel时,对焦范围最大。以 19 pixel为期望 值,通过产生呈正态分布的随机数来决定条纹的 间距。要使线阵 CCD 上接收到尽可能多的周 期,光栅图像的周期不能过大,以免超过线阵 CCD 靶面所能接收到的范围。实验中采用变周 期条纹,变周期条纹的条纹周期具有随机性,使 得线阵相机采集到的结果受被测物的影响较小。 通过实验验证变周期数字光栅对显微镜系统的 影响,用投影仪投射如图 9 所示的周期随机的变 周期黑白数字光栅到被测物的表面。得到的对 焦曲线如图 10(a)所示,横坐标为离焦量,可以得 到使用变周期数字光栅时,对焦范围为 0.4 mm, 且线性较好。图 10(b)所示为使用变周期数字光 栅时的对焦误差,对焦误差为-0.000852 mm, 对焦误差也在物镜的景深范围内。

通过实验比较得到,相比于等周期数字光栅,采

Fig. 10 Focusing results of variable-period digital grating.(a) Focusing curve; (b) focusing error

用变周期数字光栅时,其对焦范围更大。对焦误差 也更小。

本系统对焦速度的提升源于将线阵 CCD 采集的光栅图作为对焦判据。线阵 CCD 的行频要远远高于面阵 CCD 的帧率(帧率/行频,即相机采集传输

图像的速率,对于面阵 CCD 为每秒采集的帧数: frame/s,对于线阵 CCD 为每秒采集的行数:Hz)。 本系统采用的线阵 CCD 的行频为 1.95 kHz,而一 般的面阵 CCD,以 basler 的面阵 CCD 为例,能达到 的最高帧率仅 340 frame/s。因此本系统采用线阵 CCD 进行自动对焦,能显著提高对焦速度。

3.2 不同倍数物镜的对焦范围

对本系统结合不同倍数的物镜时的对焦范围进 行分析。分别采用 5 倍、10 倍和 20 倍的无限远校 正物镜进行实验,实验结果如图 11 所示。

采用放大率为5倍的无限远校正物镜(物镜的 步进为0.01 mm)进行自动对焦的结果如图11(a)所 示,能实现自动对焦的范围是0.4 mm。采用放大倍 率为10倍的无限远校正物镜(步进为0.01 mm)进 行自动对焦,对焦曲线如图11(b),能实现自动对焦 的范围为0.08 mm。采用放大倍率为20倍的无限 远校正物镜的结果如图11(c)所示,物镜的步进为 0.001 mm,即物镜每移动0.001 mm采集一次图片, 自动对焦的范围为0.014 mm。实验给出了不同倍 数物镜下系统的对焦范围,实验选取的变周期数字 光栅对5倍物镜下的对焦范围有较大的提高,在10 倍物镜和20倍物镜下,显微镜的对焦范围没有较大 提升。

3.3 对有划痕的液晶面板的对焦验证

为验证系统实际的对焦性能,使用本系统对表 面存在划痕的液晶面板的玻璃基板进行对焦实验。 测试使用的玻璃基板如图 12(a)所示,框线所示为 划痕处。使用系统对此处玻璃基板进行对焦后的面 阵 CCD 图像如图 12(b)所示,系统采用光栅照明, 竖直条纹为光栅图像,横向的小方格为玻璃基板的 图案,框线处为图 12(a)框线处对应的划痕位置。 可以看到,在划痕附近出现了清晰的玻璃基板图案。 对此处的液晶面板进行对焦的对焦曲线如图12(c)

图 11 不同倍数物镜的对焦结果。(a) 5 倍;(b) 10 倍;(c) 20 倍

Fig. 11 Focusing results for objective lenses with different magnifications. (a) Five times; (b) ten times; (c) twenty times

图 12 缺陷液晶的对焦。(a)有划痕的玻璃基板;(b)面阵 CCD 采集图;(c)划痕玻璃基板的对焦曲线 Fig. 12 Focusing of defective liquid crystal. (a) Scratched glass substrate; (b) acquisited image from area-array CCD; (c) focusing curve of scratched glass substrate

所示,可以看到对焦曲线依然满足线性关系,并在正 焦处大于 0。

4 结 论

相比于常规的自动对焦系统,所提出的自动对 焦显微镜系统采用线阵 CCD 进行自动对焦,提高了 自动对焦的速度。将光栅信号的两路对比结果作为 是否对焦的判断依据,可以较准确地判断离焦量和 离焦方向,最终得到的焦面位置在景深范围之内。 自动对焦函数对自动对焦的速度至关重要,实验将 变周期数字光栅运用于自动对焦显微镜中,得到比 等周期数字光栅运用于自动对焦范围。此外,本系 统仍有需要改进的地方,当要求高精度的对焦时,影 响对焦精度的因素会更多,如光在被测物表面反射 引起的误差^[15]等,需要进一步进行研究,并使用不 同的光源系统来去除面阵 CCD 采集图像上的光栅 图,避免光栅影响后续的观测。

参考文献

- [1] Tian P, Gu C C, Hu J, et al. Research survey on microscopy autofocus methods [J]. Optical Technique, 2014, 40(1): 84-88.
 田畔,谷朝臣,胡洁,等.显微镜自动对焦方法研究 综述[J].光学技术, 2014, 40(1): 84-88.
- [2] Bai T S. Research on optical microscopic auto-focus based on visual image[D]. Hefei: Hefei University of Technology, 2017: 1-10.
 柏天舒.基于视觉图像的光学显微自动对焦技术研 究[D].合肥:合肥工业大学, 2017: 1-10.
- [3] Tsai D M, Lai S C. Defect detection in periodically patterned surfaces using independent component analysis [J]. Pattern Recognition, 2008, 41 (9): 2812-2832.

- [4] Liang C P, Li Q A, Qiao Y F, et al. On autofocusing technology of optical system[J]. Electronics Optics & Control, 2006, 13(6): 93-96.
 梁翠萍,李清安,乔彦峰,等.简析光学系统自动调 焦的方法[J]. 电光与控制, 2006, 13(6): 93-96.
- [5] Davis J G, Truscott W S. Multiple reflection suppression algorithm for terahertz quasi-optic systems[J]. Electronics Letters, 2010, 46(1): 52-54.
- [6] Wang M, Chen H. Research on autofocus of the eyeball system based on image processing [J]. China Science and Technology Information, 2013 (7): 46-47.

王萌, 陈鸿. 基于图像处理的眼球自动对焦系统研究 [J]. 中国科技信息, 2013(7): 46-47.

- [7] Wang J, Chen H B, Zhang X M, et al. A threedimensional auto-focusing system based on image processing[J]. Opto-Electronic Engineering, 2013, 40(2): 46-51.
 王健,陈洪斌,张晓明,等.基于图像处理的三维自 动调焦系统[J].光电工程, 2013, 40(2): 46-51.
- [8] Xiao L, Cheng L L, Fan F M. Design of TFT-LCD panels optical detection auto-focus system [J]. Infrared and Laser Engineering, 2011, 40(9): 1789-1795.
 肖磊,程良伦,范富明. TFT-LCD 面板光学检测自

动对焦系统设计[J]. 红外与激光工程, 2011, 40 (9): 1789-1795.

- [9] Hsu W Y, Lee C S, Chen P J, et al. Development of the fast astigmatic auto-focus microscope system [J]. Measurement Science and Technology, 2009, 20(4): 045902.
- [10] Sun Y, Luan X M, Zhao F. An improved imageclarity evaluation function [J]. Applied Science and Technology, 2009, 36(9): 52-55.
 孙越, 栾晓明, 赵芳. 一种改进的图像清晰度评价函

数[J].应用科技,2009,36(9):52-55.

- [11] Wang Y R, Feng H J, Xu Z H, et al. Autofocus evaluation function based on saturate pixels removing
 [J]. Acta Optica Sinica, 2016, 36(12): 1210001.
 王烨茹,冯华君,徐之海,等.基于饱和像素剔除的
 自动对焦评价函数[J].光学学报, 2016, 36(12): 1210001.
- [12] Jiang Z W, Yan Y, Li Y, et al. Wide-range and high-precision microscopic focusing system for laserinduced breakdown spectroscopy [J]. Acta Optica Sinica, 2018, 38(12): 1215004.
 蒋章伟, 燕艳, 李阳, 等. 大范围高精度激光诱导击 穿光谱显微对焦系统[J]. 光学学报, 2018, 38(12): 1215004.
- [13] Duan C, Zong M C, Fan W, et al. Focus control technology in immersion lithography[J]. Acta Optica Sinica, 2018, 38(9): 0912002.

段晨, 宗明成, 范伟, 等. 浸没式光刻机对焦控制技术研究[J]. 光学学报, 2018, 38(9): 0912002.

- [14] Wang Y H, Bai T S, Dan X Z, et al. Research and comparison of TFT-LCD panel optical detection autofocus algorithm [J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(4): 339-346.
 王永红,柏天舒,但西佐,等.TFT-LCD 面板光学检测自动聚焦算法研究与比较[J].液晶与显示, 2016, 31(4): 339-346.
- [15] Sun Y W, Li S G, Ye T C, et al. Process dependency of focusing and leveling measurement system in nanoscale lithography [J]. Acta Optica Sinica, 2016, 36(8): 0812001.
 孙裕文,李世光,叶甜春,等.纳米光刻中调焦调平测量系统的工艺相关性[J].光学学报, 2016, 36 (8): 0812001.